skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Capece, Lena R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Blue carbon ecosystems such as seagrass meadows, mangrove forests, and salt marshes are important carbon sinks that can store carbon for millennia. Recently, organic matter sulfurization and pyritization have been proposed as mechanisms of net carbon storage in blue carbon ecosystems. At our study site, organic sulfur that is resistant to acid hydrolysis (protokerogen) is an order of magnitude less abundant than pyrite sulfur, suggesting a dominance of pyritization over sulfurization. The C/N ratios and carbon isotope compositions suggest that nearly half of total organic carbon and ≥ 80% of protokerogen is composed of marsh plant material. Sediment protokerogen appears to be sulfurized based on its low δ34S values (− 10‰), abundance of disulfides, and higher S/C ratio (~ 1.0%) relative to potential biogenic sulfur sources. However, the interpretation of protokerogen δ34S values is complicated by the wide range in sulfur isotope compositions of marsh plants. Evidence for sulfurization occurs within the shallowest sediments across different vegetation zones, yielding consistent products, while pyritization appears to be more sensitive to alterations in sediment redox conditions. Based on organic sulfur and pyrite content, sulfurization may be a more spatially consistent process than pyritization, with implications for carbon storage. The relative abundance of pyrite and protokerogen organic sulfur indicates that pyritization is favored at our study site, but this is likely to vary across the spectrum of blue carbon ecosystems. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026